
IMPROVING USER EXPERIENCE

BY IMPROVING SEARCH RESULTS

When it comes to page load speed, faster is 
always better. Page loading time is the major 
contributing factor in website abandonment. In 
simple terms, in today’s online environment, the 
average user has no patience for a website that 
takes too long to load.

They do well in situations where data can be 
neatly partitioned into columns, and where 
everything is correctly spelled, however real 

Can the speed of your 
website really affect its 
bottom line? 

Both Amazon and Google reports a significant 
drop off in user interaction with every increment 
in page load time. When it comes to searching, 
Google reports a 20% drop off in traffic with just 
a half a second’s delay1. If a user is searching for 
something on your site, it already means they 
can’t find what they’re looking for. A slow site 
search will just compound their frustration and 
drive them away from your site and business, 
losing you customers and badly affecting your 
bottom line.

world data, and your client’s brains, don’t work 
that way. Search results can vary from nearly 
correct to wildly off target for various reasons:

• People struggle to remember the exact 
term or spelling they were looking for.

• The term they’re looking for is embedded in 
1000 word documents with any number of 
comments.

www.eagerelk.com

SEARCH THE OLD WAY

Traditional (or relational) 
databases weren’t designed 
and aren’t built for search.

www.eagerelk.com

http://blog.eagerelk.com
http://blog.eagerelk.com
http://blog.eagerelk.com
https://twitter.com/eagerelk
https://plus.google.com/+Eagerelk/posts
http://blog.eagerelk.com/feed/


• The ambiguity of natural languages causes 
a plumber to see results for the skate park’s 
(more popular) halfpipe than for the pipe 
he’s looking for.

The reason for this inaccuracy is that traditional 
database searching uses any number of 
combinations of the LIKE ‘%term%’ clause, where 
large text fields are scanned for a specific term. 
What makes it even worse is that the indexing 
optimizations normally available to relational 
data is not available when searching like this. 

There are other strategies to try and improve 
your search speeds in a relational database, but 
it will only address one of a number of issues:

• Slow searches due to wildcard matching
• Different forms and variations of a word is 

ignored. Searching for “moved” won’t return 
results for “moving” or “mover”.

• The context of the document is discarded, 
causing irrelevant results to be ranked 
highly.

• Misspelt words in the documents are 
ignored and searches for misspelt words 
return little or no results.

Traditional databases like MySQL and Postgres 
have retrofitted full text capabilities onto 
their relational database engines. If you have 
a solution that relies strongly on relational 
data but need a proper search solution you 
have the option to use the retro fitted full text 
search functionality in addition to the relational 
functionality.

Since the amount of information available 
is only getting larger, being able to find 
relevant information becomes more and 
more important. This realisation lead to the 
development of databases focused specifically 
on improving searching. Some solutions are 
classified as NoSQL and focuses on unstructured 
or loosely structured documents. These include 
databases like MongoDB and CouchDB. Other 
solutions are classified as document stores 
where a document is stored in it’s entirety but 
indexed to enable efficient searches. Document 
stores includes Lucene, SOLR, and various other 
databases like Elasticsearch which is built on 
Lucene.

SEARCH THE NEW WAY

To address the shortcomings 
of searching through relational 
databases, techniques around 
full text searching has been 
developed. 

www.eagerelk.com

http://blog.eagerelk.com
http://blog.eagerelk.com
https://twitter.com/eagerelk
https://plus.google.com/+Eagerelk/posts
http://blog.eagerelk.com/feed/


Building your searching functionality on top 
of such a document store will go a long way 
towards returning results that are:

• Delivered more quickly.
• More accurate.
• More relevant.
• More fault tolerant.

Word Stemming

Most words can be broken into a prefix, stem, suffix and ending. Elasticsearch allows you to search on 
the stem of both the search term and the search subjects.

Word Prefix Stem Suffix Ending

understatements under state ment s

reactions re act tion s

disabilities dis able ity s

unrealised un real ize ed

incredibly in credit able y

These databases give you a number of 
advantages over traditional databases right out 
of the box:

• Searches are specifically optimized for large 
documents containing a lot of text.

• Fuzzy searching is supported through 
stemming and other techniques.

• Misspelt words are handled correctly by 
checking the Levenshtein distance between 
words.

• The relationships between documents can 
easily be highlighted.

A good working example 
of the application of these 
techniques are Amazon’s 
highly effective cross-sell/
up-sell suggestions to 
customers:

Example

www.eagerelk.com

http://blog.eagerelk.com
http://blog.eagerelk.com
https://twitter.com/eagerelk
https://plus.google.com/+Eagerelk/posts
http://blog.eagerelk.com/feed/


Problem How Elasticsearch solves it

Speed

• Elasticsearch allows optimization in both indexing (getting the data into the database) and 
searching (retrieving the data).

• With its bulk API large numbers of documents can be indexed in a relatively short time.
• Caching, filtering and various other optimizations allow for significant decreases in time 

taken for search queries. See the Growth Intelligence use case4 for more information.

Word 
variations

Elasticsearch provides various language analyzers to aid in improving search results. Each of 
these analyzers provide various techniques, from stemming to tokenization, to help improve 
search results. These need to be tweaked depending on the implementation and the default 
language. See the Elasticsearch guide on Dealing with Human Languages8.

Context

When returning search results, Elasticsearch gives you the option to give some context around 
the results, such as other categories or ranges that contain results that might be of interest 
to the user. This allows the system to guide the user to results that are there, instead of the 
user just making uninformed searches that lead no where. See the Quizlet use case9 for more 
information.

Misspelt 
words

Elasticsearch has a fuzzy query7 to address the issue where users mistype the term they are 
searching for. You can specify the fuzziness to allow for a greater or smaller range of misspelt 
words, and rank your results according to how closely the word matched. See the Globo use 
case6 for more information.

Scalability

To ensure data reliability, Elasticsearch has redundancy built in. No extra configuration 
required. The data is distributed and replicated from the word go. This also allows the system 
to very easily scale horizontally, ensuring that you’ll always be able to meet your customers 
needs, without having to sacrifice on performance. See the Github use case5 for more 
information.

USING ELASTICSEARCH TO IMPROVE SEARCH RESULTS

Elasticsearch is one of the new generation databases that provides a number of features to help 
you improve your search results:

www.eagerelk.com

http://blog.eagerelk.com
http://blog.eagerelk.com
https://twitter.com/eagerelk
https://plus.google.com/+Eagerelk/posts
http://blog.eagerelk.com/feed/


Your clients and users might have experienced 
the issues discussed while searching on your 
site or through your content. As discussed, 
searches in your application can be improved in 

a number of ways, and with each improvement 
comes an increase in user satisfaction, 
stickyness and a potential revenue retention 
and increase for your business.

WHAT YOUR BUSINESS GAINS

EagerELK is focussed on assisting its clients with rolling out 
Elasticsearch solutions. We provide a full stack service around 
the ELK stack - Elasticsearch, Logstash and Kibana.

For more information or to read our blog visit us on the web: 
http://www.eagerelk.com

More about
EagerElk

1. http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
2. https://lucidworks.com/blog/full-text-search-engines-vs-dbms/
3. http://en.wikipedia.org/wiki/Levenshtein_distance
4. https://www.elastic.co/use-cases/growth-intelligence
5. https://www.elastic.co/use-cases/github
6. https://www.elastic.co/use-cases/globo
7. http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-fuzzy-query.html
8. http://www.elastic.co/guide/en/elasticsearch/guide/current/languages.html
9. https://www.elastic.co/use-cases/quizlet

REFERENCES

www.eagerelk.com

http://blog.eagerelk.com
http://blog.eagerelk.com
http://blog.eagerelk.com
https://twitter.com/eagerelk
https://plus.google.com/+Eagerelk/posts
http://blog.eagerelk.com/feed/
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://lucidworks.com/blog/full-text-search-engines-vs-dbms/
http://en.wikipedia.org/wiki/Levenshtein_distance
https://www.elastic.co/use-cases/growth-intelligence
https://www.elastic.co/use-cases/github
https://www.elastic.co/use-cases/globo
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-fuzzy-query.html
https://www.elastic.co/use-cases/quizlet
http://www.elastic.co/guide/en/elasticsearch/guide/current/languages.html

